Your browser doesn't support javascript.
Montrer: 20 | 50 | 100
Résultats 1 - 10 de 10
Filtre
1.
Proc Natl Acad Sci U S A ; 120(25): e2207210120, 2023 06 20.
Article Dans Anglais | MEDLINE | ID: covidwho-20238795

Résumé

The classical manifestation of COVID-19 is pulmonary infection. After host cell entry via human angiotensin-converting enzyme II (hACE2), the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus can infect pulmonary epithelial cells, especially the AT2 (alveolar type II) cells that are crucial for maintaining normal lung function. However, previous hACE2 transgenic models have failed to specifically and efficiently target the cell types that express hACE2 in humans, especially AT2 cells. In this study, we report an inducible, transgenic hACE2 mouse line and showcase three examples for specifically expressing hACE2 in three different lung epithelial cells, including AT2 cells, club cells, and ciliated cells. Moreover, all these mice models develop severe pneumonia after SARS-CoV-2 infection. This study demonstrates that the hACE2 model can be used to precisely study any cell type of interest with regard to COVID-19-related pathologies.


Sujets)
COVID-19 , Humains , Animaux , Souris , Souris transgéniques , SARS-CoV-2 , Cellules épithéliales , Pneumocytes , Modèles animaux de maladie humaine
2.
J Med Virol ; 95(3): e28641, 2023 03.
Article Dans Anglais | MEDLINE | ID: covidwho-2287149

Résumé

Numerous emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron subvariants have shown significant immune evasion capacity and caused a large number of infections, as well as vaccine-breakthrough infections, especially in elderly populations. Recently emerged Omicron XBB was derived from the BA.2 lineage, but bears a distinct mutant profile in its spike (S) protein. In this study, we found that Omicron XBB S protein drove more efficient membrane-fusion kinetics on human lung-derived cells (Calu-3). Considering the high susceptibility of the elderly to the current Omicron pandemic, we performed a comprehensive neutralization assessment of elderly convalescent or vaccine sera against XBB infection. We found that the sera from elderly convalescent patients who experienced with BA.2 infection or breakthrough infection potently inhibited BA.2 infection, but showed significantly reduced efficacy against XBB. Moreover, recently emerged XBB.1.5 subvariant also showed more significant resistance to the convalescent sera of BA.2- or BA.5-infected elderly. On the other hand, we found that the pan-CoV fusion inhibitors EK1 and EK1C4 can potently block either XBB-S- or XBB.1.5-S-mediated fusion process and viral entry. Moreover, EK1 fusion inhibitor showed potent synergism when combined with convalescent sera of BA.2- or BA.5-infected patients against XBB and XBB.1.5 infection, further indicating that EK1-based pan-CoV fusion inhibitors are promising candidates for development as clinical antiviral agents to combat the Omicron XBB subvariants.


Sujets)
COVID-19 , SARS-CoV-2 , Sujet âgé , Humains , SARS-CoV-2/génétique , Échappement immunitaire , , Antirétroviraux , , Glycoprotéine de spicule des coronavirus/génétique , Anticorps neutralisants , Anticorps antiviraux
3.
Emerg Microbes Infect ; 12(1): 2178241, 2023 Dec.
Article Dans Anglais | MEDLINE | ID: covidwho-2237113

Résumé

Continuous emergence of the Omicron variant, along with its subvariants, has caused an increasing number of infections, reinfections, and vaccine-breakthrough infections, seriously threatening human health. Recently, several new Omicron subvariants, such as BA.5, BA.2.75, BA.4.6, and BF.7, bearing distinct mutation profiles in their spike (S) proteins, have significantly increased their capacity to evade vaccine-induced immunity and have shown enhanced infectivity and transmissibility, quickly becoming dominant sublineages. In this study, we found the S proteins of these Omicron subvariants to have 2- to 4-fold more efficient membrane fusion kinetics than that of the original Omicron variant (BA.1), indicating that these novel Omicron subvariants might possess increased pathogenicity. We also identified that peptide-based pan-CoV fusion inhibitors, EK1 and EK1C4, showed equal efficacy against membrane fusion mediated by S proteins of the noted Omicron subvariants and infection by their pseudoviruses. Additionally, either immune sera induced by wild-type (WT) SARS-CoV-2 RBD-based vaccine or BA.2 convalescent sera showed potent synergism with EK1 against both WT SARS-CoV-2 and various Omicron subvariants, further suggesting that EK1-based fusion inhibitors are promising candidates for development as clinical antiviral agents against the currently circulating Omicron subvariants.


Sujets)
COVID-19 , Humains , , SARS-CoV-2 , Antirétroviraux , Vaccins contre la COVID-19 , Glycoprotéine de spicule des coronavirus
4.
J Med Virol ; 2022 Sep 13.
Article Dans Anglais | MEDLINE | ID: covidwho-2232257

Résumé

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of the currently ongoing coronavirus disease 2019 (COVID-19) pandemic, has posed a serious threat to global public health. Recently, several SARS-CoV-2 variants of concern (VOCs) have emerged and caused numerous cases of reinfection in convalescent COVID-19 patients, as well as breakthrough infections in vaccinated individuals. This calls for the development of broad-spectrum antiviral drugs to combat SARS-CoV-2 and its VOCs. Pan-coronavirus fusion inhibitors, targeting the conserved heptad repeat 1 (HR1) in spike protein S2 subunit, can broadly and potently inhibit infection of SARS-CoV-2 and its variants, as well as other human coronaviruses. In this review, we summarized the most recent development of pan-coronavirus fusion inhibitors, such as EK1, EK1C4, and EKL1C, and highlighted their potential application in combating current COVID-19 infection and reinfection, as well as future emerging coronavirus infectious diseases.

5.
Viruses ; 14(4)2022 03 22.
Article Dans Anglais | MEDLINE | ID: covidwho-1753696

Résumé

The coronavirus disease 2019 (COVID-19) pandemic caused by infection of SARS-CoV-2 and its variants has posed serious threats to global public health, thus calling for the development of potent and broad-spectrum antivirals. We previously designed and developed a peptide-based pan-coronavirus (CoV) fusion inhibitor, EK1, which is effective against all human CoVs (HCoV) tested by targeting the HCoV S protein HR1 domain. However, its relatively short half-life may limit its clinical use. Therefore, we designed, constructed, and expressed a recombinant protein, FL-EK1, which consists of a modified fibronectin type III domain (FN3) with albumin-binding capacity, a flexible linker, and EK1. As with EK1, we found that FL-EK1 could also effectively inhibit infection of SARS-CoV-2 and its variants, as well as HCoV-OC43. Furthermore, it protected mice from infection by the SARS-CoV-2 Delta variant and HCoV-OC43. Importantly, the half-life of FL-EK1 (30 h) is about 15.7-fold longer than that of EK1 (1.8 h). These results suggest that FL-EK1 is a promising candidate for the development of a pan-CoV fusion inhibitor-based long-acting antiviral drug for preventing and treating infection by current and future SARS-CoV-2 variants, as well as other HCoVs.


Sujets)
, SARS-CoV-2 , Inhibiteurs des protéines de fusion virale , Animaux , Antiviraux/composition chimique , Antiviraux/pharmacologie , Antiviraux/usage thérapeutique , Infections à coronavirus/traitement médicamenteux , Domaine fibronectine de type III , Période , Souris , Protéines de fusion recombinantes , SARS-CoV-2/génétique , Glycoprotéine de spicule des coronavirus/métabolisme , Inhibiteurs des protéines de fusion virale/composition chimique , Inhibiteurs des protéines de fusion virale/pharmacologie
6.
Viruses ; 14(3)2022 03 06.
Article Dans Anglais | MEDLINE | ID: covidwho-1732247

Résumé

Our previous studies have shown that cholesterol-conjugated, peptide-based pan-coronavirus (CoV) fusion inhibitors can potently inhibit human CoV infection. However, only palmitic acid (C16)-based lipopeptide drugs have been tested clinically, suggesting that the development of C16-based lipopeptide drugs is feasible. Here, we designed and synthesized a C16-modified pan-CoV fusion inhibitor, EK1-C16, and found that it potently inhibited infection by SARS-CoV-2 and its variants of concern (VOCs), including Omicron, and other human CoVs and bat SARS-related CoVs (SARSr-CoVs). These results suggest that EK1-C16 could be further developed for clinical use to prevent and treat infection by the currently circulating MERS-CoV, SARS-CoV-2 and its VOCs, as well as any future emerging or re-emerging coronaviruses.


Sujets)
, Coronavirus du syndrome respiratoire du Moyen-Orient , Humains , Lipopeptides/pharmacologie , Acide palmitique/pharmacologie , SARS-CoV-2
9.
Int J Mol Sci ; 22(21)2021 Nov 01.
Article Dans Anglais | MEDLINE | ID: covidwho-1488619

Résumé

The COVID-19 pandemic caused by SARS-CoV-2 infection poses a serious threat to global public health and the economy. The enzymatic product of cholesterol 25-hydroxylase (CH25H), 25-Hydroxycholesterol (25-HC), was reported to have potent anti-SARS-CoV-2 activity. Here, we found that the combination of 25-HC with EK1 peptide, a pan-coronavirus (CoV) fusion inhibitor, showed a synergistic antiviral activity. We then used the method of 25-HC modification to design and synthesize a series of 25-HC-modified peptides and found that a 25-HC-modified EK1 peptide (EK1P4HC) was highly effective against infections caused by SARS-CoV-2, its variants of concern (VOCs), and other human CoVs, such as HCoV-OC43 and HCoV-229E. EK1P4HC could protect newborn mice from lethal HCoV-OC43 infection, suggesting that conjugation of 25-HC with a peptide-based viral inhibitor was a feasible and universal strategy to improve its antiviral activity.


Sujets)
Antiviraux/pharmacologie , Hydroxycholestérols/composition chimique , Lipopeptides/composition chimique , SARS-CoV-2/effets des médicaments et des substances chimiques , Séquence d'acides aminés , Animaux , Antiviraux/composition chimique , Antiviraux/usage thérapeutique , Poids/effets des médicaments et des substances chimiques , COVID-19/virologie , Coronavirus humain 229E/effets des médicaments et des substances chimiques , Coronavirus humain 229E/pathogénicité , Infections à coronavirus/traitement médicamenteux , Infections à coronavirus/mortalité , Infections à coronavirus/virologie , Coronavirus humain OC43/effets des médicaments et des substances chimiques , Coronavirus humain OC43/pathogénicité , Modèles animaux de maladie humaine , Synergie des médicaments , Humains , Hydroxycholestérols/pharmacologie , Hydroxycholestérols/usage thérapeutique , Lipopeptides/pharmacologie , Lipopeptides/usage thérapeutique , Souris , Souris de lignée BALB C , Polyéthylène glycols/composition chimique , SARS-CoV-2/isolement et purification , SARS-CoV-2/physiologie , Taux de survie , Pénétration virale/effets des médicaments et des substances chimiques ,
10.
Signal Transduct Target Ther ; 6(1): 288, 2021 07 29.
Article Dans Anglais | MEDLINE | ID: covidwho-1333906

Résumé

The COVID-19 pandemic poses a global threat to public health and economy. The continuously emerging SARS-CoV-2 variants present a major challenge to the development of antiviral agents and vaccines. In this study, we identified that EK1 and cholesterol-coupled derivative of EK1, EK1C4, as pan-CoV fusion inhibitors, exhibit potent antiviral activity against SARS-CoV-2 infection in both lung- and intestine-derived cell lines (Calu-3 and Caco2, respectively). They are also effective against infection of pseudotyped SARS-CoV-2 variants B.1.1.7 (Alpha) and B.1.1.248 (Gamma) as well as those with mutations in S protein, including N417T, E484K, N501Y, and D614G, which are common in South African and Brazilian variants. Crystal structure revealed that EK1 targets the HR1 domain in the SARS-CoV-2 S protein to block virus-cell fusion and provide mechanistic insights into its broad and effective antiviral activity. Nasal administration of EK1 peptides to hACE2 transgenic mice significantly reduced viral titers in lung and intestinal tissues. EK1 showed good safety profiles in various animal models, supporting further clinical development of EK1-based pan-CoV fusion inhibitors against SARS-CoV-2 and its variants.


Sujets)
Antiviraux , , SARS-CoV-2 , Glycoprotéine de spicule des coronavirus , Pénétration virale/effets des médicaments et des substances chimiques , Animaux , Antiviraux/composition chimique , Antiviraux/pharmacologie , Cellules Caco-2 , Cristallographie aux rayons X , Évaluation préclinique de médicament , Humains , Souris transgéniques , Domaines protéiques , SARS-CoV-2/composition chimique , SARS-CoV-2/génétique , SARS-CoV-2/métabolisme , Glycoprotéine de spicule des coronavirus/composition chimique , Glycoprotéine de spicule des coronavirus/génétique , Glycoprotéine de spicule des coronavirus/métabolisme
SÉLECTION CITATIONS
Détails de la recherche